ショットピーニング後に行われる低温焼なましの目的

  • 投稿者:  カテゴリ:熱処理
  • 表示回数 3,136

高い疲れ強さを要求されるばねにはショットピーニングを施工されます。
ショットピーニングを行うとばねの表面には圧縮残留応力が形成され、引張方向の負荷応力を受けると、負荷応力を軽減する働きがあり、結果として疲れ強さを向上さますが、ショットピーニングも一種の塑性加工であり、表面には残留応力とともに微視的なひずみも残りまする。
ショットピーニングを受けた材料は、微視的ひずみの導入によりねじり降伏点が低下し、ばねとしてはへたりやすい状態にはなりますが、ショットピーニング後の低温焼なましは、このねじり降伏点を回復させ、耐へたり性を向上させる特性があります。残留応力は低温焼なまし温度の上昇とともに減少する。よって、この低温焼なまし条件には圧縮残留応力を残しつつ、材料の降伏点を高める条件を求められます。

オイルテンパー線のばね製造工程ごとのねじり降伏点の変化
SWOSC-VΦ4mmのショットピーニングと低温焼なましによるねじり降伏点の変化 
SWOSC-VΦ4mmのショットピーニングと低温焼なましによるねじり降伏点の変化

ショットピーニング後の低温焼な
ましと残留応力及び疲れ強さの関係

 

 

ショットピーニング後の低温焼なましと残留応力及び疲れ強さの関係 
ショットピーニング後の低温焼なましによる
残留応力の変化と疲れ強さ
ショットピーニング後の低温焼なましによる残留応力の変化と疲れ強さ

上記両図よりへたりを重視する場合には300℃でもよいが、その場合、残留応力の消失が大きくなり、疲労強度が低下を招いてしまう。そのようなことからショットピーニング後の低温焼なましには200~250℃の温度条件が最良とされています。
ショットピーニング後の低温焼なましで降伏点が回復するのは、鋼中の炭素のひずみ時効という現象を利用しているためであり、この現象はステンレス鋼も含め、どの鋼でも同じように生じるので、処理条件は上記の条件が共通して適用できます。